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1. Introduction

In the standard circuit-based model of quantum computing, we initialize a product state of
all |0〉s, perform the algorithm as an encoded sequence of 1-qubit and 2-qubit gates, and then
measure in a standard basis. On the other hand, in measurement-based quantum computing,
we initialize an entangled state, and the algorithm is encoded as a sequence of adaptive mea-
surements (i.e. measurements whose bases depend on the result of previous measurements). In
Section 2, we will describe teleportation-based quantum computing, a canonical example of the
measurement-based model [Jos05]. In Section 3, we will examine some motivations for speedups
for measurement-based models, and apply these motivations to speed up Clifford operations.
In Section 4, we will investigate one-way quantum computing, another canonical example of
the measurement-based model [Jos05]. Finally, in Section 5 we will discuss the general compu-
tational complexity of measurement-based models and important reductions between quantum
computing models [Bro10].

2. An Example: Teleportation-Based Quantum Computation

Teleportation-based quantum computing implements unitary operations by using a variation
of the standard teleportation protocol. Informally, a 1-qubit unitary U is applied to a state
|ψ〉 by using the protocol and measuring in a rotated basis to teleport U |ψ〉 instead of just
|ψ〉. Similarly, a CNOT under the teleportation-based protocol is roughly implemented by
teleporting two qubits, but with the two Bell pairs initially entangled. We describe both of
these implementations in further detail below. Showing that arbitrary 1-qubit unitaries and
CNOT can be implemented in the teleportation-based model is sufficient to conclude that the
model is universal.

2.1. Teleporting an Arbitrary 1-Qubit Gate. Recall the standard Bell Basis:

|B00〉 :=
1√
2

(|00〉+ |11〉)

|B10〉 :=
1√
2

(|00〉 − |11〉)

|B01〉 :=
1√
2

(|01〉+ |10〉)

|B11〉 :=
1√
2

(|01〉 − |10〉)

Now we consider the rotated (but still orthogonal and perfectly valid) basis B(U) = {|B(U)cd〉},
where |B(U)cd〉 = (U †⊗I)Bcd. Then, instead of measuring in the Bell basis before teleportation,
the idea is we measure in this new basis B(U). This is equivalent to applying U to our top qubit
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(the one being teleported) before teleporting, but it is important to note here that we are not ever
actually applying a unitary, only measuring in a clever basis. After performing the teleportation
scheme in this manner, our target qubit has the state XdZcU |ψ〉. Then, we simply correct our
Pauli errors as needed based on what we have measured, exactly as in the standard teleportation
algorithm. We rigorously justify these ideas in the appendix in general with qudits.

2.2. Teleporting a CNOT gate. Consider Figure 1. Given two Bell pairs entangled with a
CNOT (|χ〉), we first apply the standard teleportation protocol. Informally, we can think of the
CNOT entangling the Bell pairs as conjugating with the Pauli corrections out to the right hand
side of Figure 1, where we can think of it as being applied on the teleported states |α〉 and |β〉.
The X and Z corrections conjugate with the CNOT as follows:

CNOT(X ⊗ I) = (X ⊗X)CNOT

CNOT(I ⊗X) = (I ⊗X)CNOT

CNOT(Z ⊗ I) = (Z ⊗ I)CNOT

CNOT(I ⊗ Z) = (Z ⊗ Z)CNOT

Figure 1. Teleporting a CNOT (|out〉 = CNOT |β〉 |α〉).

It remains to justify the creation of |χ〉, since we cannot apply the entangling CNOT gate.
However, if we expand our initial resource state to allow 3-qubit GHZ states |Υ〉, then we can
create |χ〉 using the sequence of gates shown in Figure 2.

Figure 2. Creating |χ〉 from GHZ resource states |Υ〉 and 1-qubit gates.
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3. Adaptive Measurements and the Parallelizability of Clifford Operations

3.1. Adaptive Measurements. One apparent advantage of measurement-based models is that
since measurements are performed on separate qubits, it might be possible to perform them
simultaneously. However, this is not possible in general. Suppose we wish to perform the
computation U2U1 |ψ〉, where each Ui is a 1-qubit unitary. In the teleportation-based model
described previously, we achieve this by measuring in the Bell basis MB(Ui) and then applying
Pauli corrections Pi. If tried to measure our qubits transversally and apply no intermediate Pauli
corrections, our final state would be P2U2P1U1 |ψ〉, which almost always cannot be corrected to
yield U2U1 |ψ〉.

For example, take U1 = Rx(θ) and U2 = Rz(η). Then using the conjugation relations between
Pauli operators and arbitrary X and Z rotations, our final state with transversal measurement
is

XcZdRz(η)XaZbRx(θ) |ψ〉 = XcZdXaZbRz((−1)cη)Rx(θ) |ψ〉 .

After corrections, we have the state Rz((−1)cη)Rx(θ) |ψ〉 which cannot be transformed to the
desired state Rz(η)Rx(θ) |ψ〉 by simple Pauli operators. We can avoid this problem with adaptive
measurements, teleporting Rz((−1)cη) instead of Rz(η) after determining c:

XcZdRz((−1)cη)XaZbRx(θ) |ψ〉 = XcZdXaZbRz(η)Rx(θ) |ψ〉 .

3.2. Parallelizing Clifford Gates.

Definition 1. A gate is Clifford if it preserves the Pauli group under conjugation. Mathe-
matically, C = {C|C†PC ∈ P}. Alternatively, a unitary C is Clifford is CP = P ′C for Paulis
P, P ′.

What was fundamentally forcing us to perform these adaptive measurements? Phrased a
different way, what was preventing us from performing all of these measurements in parallel? It
stems from the fact that most unitaries are not Clifford. But what if all our unitaries that we
want to apply happen to be Clifford?

We have the follwing theorem from Josza [Jos05]:

Theorem 2. Any Clifford circuit can be simulated by a constant depth measurement process
(quantum computation), along with some log depth classical processing.

Proof. If all our gates are Clifford, then our computation looks something like PkCk · · ·P2C2P1C1|ψ〉.
But the fact that all the Ci’s are Clifford tells us we can effectively ”commute” them all over
to the right (and we know exactly how each Clifford conjugates with each Pauli), to yield

Xan
n Zbnn · · ·X

a1
1 Zb11 Cn · · ·C1|ψ〉. Each of the ai and bi are determined by both the conjugation

relationships as well as the measurement outcomes. This means we can perform all of our mea-
surements in parallel, which tells us that the entire operation requires only constant quantum
depth! But there is a catch: we need to classically compute each of the ai and bi terms. The
key here is to note that each of these terms is a bitwise sum of some measurement outcomes
ai = i1 ⊕ · · · ⊕ ik, which can be computed log depth by first computing i1 ⊕ i2 and i3 ⊕ i4
and so on in parallel, and then proceeding to the next layer. All of these calculations can be
parallelized, for a total of log depth classical computation. �
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4. One-way Quantum Computation

In this section we will briefly introduce one-way quantum computation. Unlike the measurement-
based model, the initial entangled state is not a collection of Bell pairs, but instead a cluster
state formed by initializing a 2D grid of qubits to the state |+〉 and performing transversal
controlled-Z operations between every neighboring pair of qubits.

4.1. Implementing an Arbitrary 1-Qubit Gate. We can implement an arbitrary 1-qubit
gate U = Rx(ζ)Rz(η)Rx(ξ) as in Figure 3.

Figure 3. Creating |χ〉 from GHZ resource states |Υ〉 and 1-qubit gates.

In Figure 3, the final state on the rightmost qubit is Xs2+s4Zs1+s3U |ψ〉. Applying the appro-
priate X and Z Pauli corrections will yield the desired state U |ψ〉.

4.2. Implementing a CZ gate. We can also implement a controlled-Z gate as in Figure 4.

Figure 4. Creating |χ〉 from GHZ resource states |Υ〉 and 1-qubit gates.

As with the implementation of our 1-qubit unitary, Pauli corrections may need to be applied
to both output qubits.

5. MBQC Computational Complexity

To investigate the computational complexity of measurement-based models, we consider a new
primitive based on the one-way model, another canonical example of measurement-based quan-
tum computing. A measurement pattern (MP) is a sequence of commands, where commands
consist of:

• CZi,j : Controlled-Z gates for entangling qubits.

• Mi(θ): Measurements of qubit i in {|0〉 ± eiθ |1〉} basis.
• Xs

i , Z
s
i : Dependent corrections of qubit i based on results of previous qubits (i.e. s1, . . . , sk),

where s = s1 + · · ·+ sk.
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Recall that for a quantum circuit C, the size of C is the number of gates in C and the depth of
C is the longest path of gates. Similarly, we take the size of a measurement pattern t to be the
number of commands in t and depth of t to be the longest path of dependent commands in t.

5.1. Equivalence between MPs and Quantum Circuits.

Lemma 3. Any quantum circuit C can be simulated by a MP of size O(size(C)) and depth
O(depth(C)).

Proof. As shown in Section 4, each 1-qubit gate in C can be implemented as a measurement
pattern with a 6-fold increase in depth and size, corresponding to the 4 measurements and the 2
corrections (X and Z) needed to yield the state U |ψ〉 on the final qubit. Moreover, each CNOT
can be implemented with a 14-fold increase in size and a 3-fold increase in depth, corresponding
to the 1 transversal set of 10 measurements and the 2 pairs of corrections (X and Z on each
output qubit). �

Lemma 4. Any MP t can be simulated by a quantum circuit of size O(size(t)3) and depth
O(depth(t) log(size(t))).

These two lemmas hint at a depth separation between the circuit model and measurement
patterns in some cases which is logarithmic in the size of the measurement pattern. For example,

U
(n)
parity : |x1, x2, . . . , xn〉 →

∣∣∣∣∣x1, x2, . . . ,
n⊕
i=1

xi

〉
requires a log(n)-depth circuit simulation ([BK07]). However, it is a Clifford operation, so it is
simulatable by a constant-depth MP. We pin down this separation more in the next subsection
by establishing an equivalence between MPs and circuits with unbounded fan-out.

5.2. Equivalence between MPs and Quantum Circuits with Unbounded Fan-out.

Definition 5 (Fan-out). U
(n)
FANOUT := |y1, ..., yn−1, x〉 → |y1 ⊕ x, ..., yn−1 ⊕ x, x〉

Theorem 6 ([Bro10]). Any circuit C with unbounded fan-out can be simulated by a measurement
process (MP) of depth O(depth(C)). Similarly, any MP t can be simulated by a circuit with
unbounded fan-out of depth O(depth(t)).

Proof. We first show that there is a depth-preserving transformation from unbounded fan-out
circuits to measurement patterns. The unbounded fan-out gate is Clifford and thus can be im-
plemented by a constant depth measurement pattern. Moreover, there exists a depth-preserving
transformation for all non-fan-out gates by Lemma 3.

We then show that there is a depth-preserving transformation from measurement patterns to
unbounded fan-out circuits. We decompose the measurement pattern into k = depth(t) layers,
each of which has entangling operations, measurements, X-corrections, and Z-corrections. We
show that each type of command within a layer can be done in constant depth:

• The entangling operations CZ can be done in constant depth in a quantum circuit since
the CZ gates all commute.
• The measurements can also be done in constant depth since we can simultaneously apply

gates to rotate each qubit into the standard basis and then use the safe storage tech-
nique (applying CNOTs between desired qubits and ancilla initialized to |0〉 effectively
measures the desired qubits).



6 MICHAEL WHITMEYER AND JAMES CHEN

• Each dependent Z-correction can be transformed into a sequence of controlled Z gates,
where the control qubits correspond to the measurement results that the Z-correction
depends upon. Although this sequence of CZs is not of constant depth, the overall
unitary formed by the composition of this sequence is diagonal. Moore and Nilsson
showed that for pairwise commuting unitaries Ui, a sequence of controlled-Ui gates can
be implemented by a constant depth measurement pattern. Hence our layer of dependent
Z-corrections can be implemented in constant depth.
• Each dependent X-correction can be transformed into a Z-correction by applying a

Hadamard transformation to the relevant qubit, which is at most a constant increase in
depth. Then our constant-depth implementation of Z-corrections can be applied.

�

This theorem is especially powerful for two reasons:

• First, it allows us to immediately apply results of quantum circuits with unbounded fan-
out to measurement patterns. For example, QFT and factoring can be done by constant
depth circuits with unbounded fan-out with bounded error, and so can also be done by
constant depth measurement patterns with bounded error.
• Second, it expresses the power of measurement-based quantum computing in terms of a

gate in the circuit model. It was not immediately evident before this result that such a
simple connection existed.

6. Conclusion

Measurement based quantum computing is a fundamentally new way to view not just quan-
tum information processing, but computing in general. Unlike the circuit based model, there
is no known classical analogue for MBQC in the classical world; it fundamentally relies on the
properties of quantum mechanics. There is also a very nice connection [Got99] between the
measurement based schemes we have described above and the stabilizer error correcting codes
we have learned about in class. In both quantum error correction and quantum teleportation,
quantum information after a partial measurement is preserved only in a subspace of the original
system. In both applications, our data is transformed within this subspace, but this transfor-
mation is indexed by our measurement outcome and is therefore able to be corrected. When
we generalize to teleporting a gate, rather than a state, we are simply changing what subspace
is being preserved in a clever, allowing us to implement a unitary by only applying measurements.

In this review we investigated the teleportation-based model, one of the canonical examples
of measurement-based quantum computing. From there, we showed how Clifford circuits can
actually be computed in constant quantum depth and log classical depth using MBQC. Lastly,
we introduced the one-way model and demonstrated equivalence between this model the cir-
cuit model with unbounded fan-out. We have seen how MBQC is universal and moreover can
potentially offer some advantages over the circuit model for algorithms that require large fan-out.
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8. Appendix

8.1. Teleportation. The following lemmas prove the standard teleportation protocol on qudits
and the teleportation of a 1-qudit unitary using a rotated basis.

Lemma 7. Let |φ〉 = 1√
d

∑d−1
i=0 |i〉|i〉 be the maximally entangled state in d dimensions, and let

|α〉 =
∑
aj |j〉. Then projecting |α〉1|φ〉23 onto |φ〉12 results in the state 1

d |α〉3 on qubit 3.

Proof. We have that the projection is

1

d

∑〈i|〈i|∑
j,k

aj |j〉|k〉|k〉

 =
1

d

∑
i,j,k

ajδijδik|k〉 =
1

d

∑
k

ak|k〉

�

We have a very similar result for teleporting a unitary, which serves as a proof of the claim
about that measuring in our rotated Bell Basis B(U) does in fact teleport the unitary U . We
let |φ(U)〉 = (U † ⊗ I)|φ〉. Then we have the following lemma:

Lemma 8. Projecting |α〉1|φ〉23 onto |φ(U)〉12 results in the state 1
dU |α〉3 on qubit 3.

Proof. We have our projection is

1

d

∑〈i|〈i|U∑
j,k

aj |j〉|k〉|k〉


=

1

d

∑〈i|〈i|∑
j,k

bj |j〉|k〉|k〉


where

∑
bj |j〉 := U

∑
aj |j〉. Then, continuing our analysis in the same manner as before, we

are left with the state
1

d

∑
i,j,k

bjδijδik|k〉 =
1

d

∑
k

bk|k〉 =
1

d
Uα

�


